中崙高中防災教育融入地球科學:教學設計

地球科學中的防災教育:

- 一、 地震防災教育
- 二、火山防災教育
- 三、颱風、洪水防災教育
- 四、山崩、土石流防災教育

地震防災 課程

• 認識地震: 地震波動畫

• 影片學習: 向大地震學習

• 行動學習: 地震儀APP

• 探究學習:台灣的地震災害

火山防災 課程

- 認識火山:成因、類型等
- 影片學習:夏威夷火山、 大屯火山新聞
- 監測網站:大屯火山觀測站、 探討火山發生的前兆

颱風防災 __課程

- 認識颱風:成因、結構、路徑
- 影片新聞學習: 追風計畫
- 颱風災害與洪水防災

山崩土石流防災課程

- 認識坡地災害成因、類型
- · 新聞影片學習:八斗子 山崩還是土石流?
- · 小林村事件省思(也屬於 颱風災害引起)

; 向大地震學習 ;

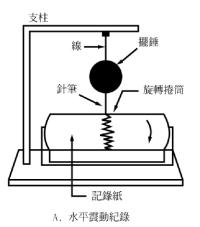
中崙高中教師 林詩怡 編寫

1999年9月21日<u>集集</u>大地震造成的災情讓我們至今仍印象深刻,更讓我們看到了生命的脆弱。<u>台灣</u>是由板塊的碰撞、擠壓而產生的,因此地震是我們不可避免的天然災害。多認識地震一些,能幫助我們在地震來臨時,鎮靜的面對地震、處理地震所造成的問題。

肝可回到危险 一处全心民门足员们可应	
問題	得分
一、引起地震的原因有哪些(請寫三點)?其中哪一個是最主要的原因?	
(1) (2)	
(3)	
二、 <u>台灣</u> 是由哪兩個板塊碰撞而生成?地表何處可見這兩個板塊的邊界? 論台灣地區哪裡(東部、西部、南部、北部)最常發生地震?相同規模 地震在哪邊(東部、西部、南部、北部)造成的災害會較嚴重?為什麼	莫的
(1)	
(2)	
(3)	
(5)	
三、中央氣象局將地震強度(震度)分為幾級?以什麼作為分級的依據? 的分級對我們而言有什麼重要性?	§度
(1) (2)	
(3)	
四、地震波分為哪三類?請依①波速快慢 ②對地表的破壞程度 來排序。	
(1)	
(2) ①	
五、地震儀的類型分為哪兩種?請分別說明其優點與缺點為何?	
(1)	
(2)	
六、以 921 為例,中央氣象局的地震速報系統在地震後多少時間之內,發係 地震消息?為什麼我們需要地震速報?	布了
(1)	
(2)	

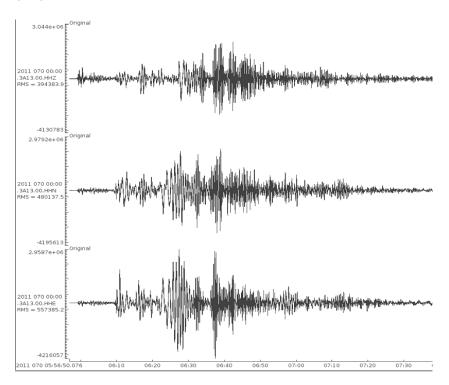
中崙高中防災教育融入行動學習教案:地震儀的原理

教學設計者	林詩怡							
單元名稱	地震儀原理與實作							
教學領域	高中地球科學	實施班級及課 程實施 環境範圍	高中一年級 ■ 在教室裡■ 在校園裡					
教學時間 (請寫出日期,供班 及資源分配。)	(依照課程進度表安排!)	教材來源	高中基礎地球科學上冊 地震單元					
學生 ipad 所需台數		□ 一人一台,共台。 (建議 2 人一台為佳) ■ 小組(<u>2</u> 人)一台,共 <u>20</u> 台。						
課程所需的 ipad 應 用程式名稱 (請附圖示)	http://www.iseismometer.com/ iSeismometer							
教學研究	觀察學生是否能從三軸地震儀APP體驗課程,藉由小組討論、設計活動,歸納出 不同的震動模式與震源距離的關係。							
教學目標	希望透過三軸地震儀APP,讓學生實際記錄不同震動模式所產生的資料,並練習 推算震源距離,了解地球物理學家探測地球內部時所使用的地震學測勘法。							
數位學習單元活動 設計	一、認識地震儀原理,學習如何解讀三軸地震儀資料。二、應用三軸地震儀 APP,實際測量不同的震動模式,並記錄距離產生震動來源不同遠近處的震動資料。三、從各組震動資料,推測震動方式,並嘗試推算震源距離。							
學習評量	在活動中進行形成性評量	,且根據活動學	習單的完成度進行總結性評量。					
備註 (希望的協助)	需要在各班進行前先借用	iPad 便於課程事	写前準備,謝謝!					


中崙高中防災教育融入地球科學:地震儀與地震定位補充講義


授課教師: 林詩怡

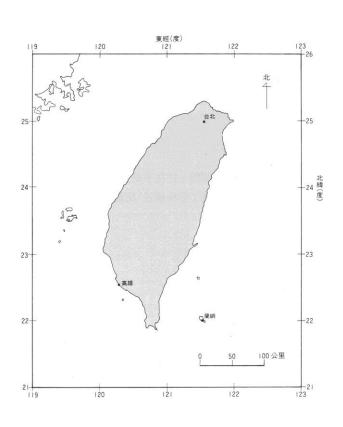
地震儀結構原理


(一) 地震儀

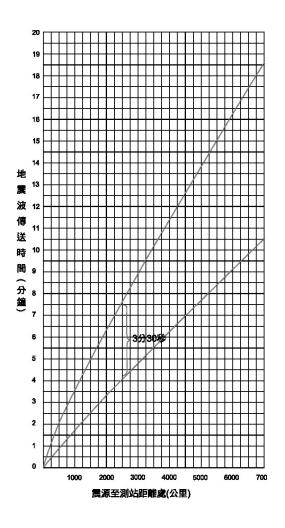
- 1. <u>震源</u>:地底下發生斷層的起源點; <u>震央</u>:震源垂直投影於地面上的點。
- 2. 地震發生時,地面上的人最先感受到的是上下震動的 <u>P 波</u> (實體波、縱波),破壞力較小;再來是前後左右震動的 <u>S 波</u> (實體波、橫波),破壞力次之;最後到達的是<u>表面波</u>,破壞力也最強。

(二) 三軸地震儀的紀錄

(三) 地震定位 (題目出處: 龍騰版舊教材)


根據 P 波和 S 波到達地震測站的時間差,可以推算得知地震發生的地點到測站間的距離,若測站離 震源很近,則 P 波和 S 波的時間差會很短,幾乎同時到達。

【例題一】假設某地區的 P 波速率 (Vp) 平均為 6 公里/秒,且 S 波速率 (Vs) 平均為 4 公里/秒,若此區域的測站測到地震的 P 波與 S 波的到達時間相差 10 秒,則震源距離測站多遠? (解)


【例題二】假設台灣附近發生地震,在台北、高雄、蘭嶼三個測站都測到地震的 P 波與 S 波。若此區域 P 波速率為 5 公里/秒,S 波速率為 3 公里/秒,請完成下表,並在左下圖畫出震央的可能位置。(比例尺約 1.7 cm = 100 km)

測站	Ρÿ	皮到達明	寺間	Si	皮到達明	寺間	時間差	震央距離	換算圖上長度
/则岭	時	分	秒	時	分	秒	(秒)	(公里)	(公分)
台北	12	00	44.8	12	01	14.7			
高雄	12	00	37.4	12	01	02.3			
蘭嶼	12	00	22.8	12	00	38.0			

(解)

圖中的震央無法完美交於一個點,誤差可能原因為何?

【例題三】若某地震震源至測站距離與 P 波、S 波的傳遞時間關係圖(走時曲線)如右下圖, (1)假 設甲測站測得 P 波到達時間為 10 時 8 分 20 秒, S 波到達時間為 10 時 11 分 50 秒,則震源 離此測站的距離為何? (2)若乙測站測得 P 波到達時間為 10 時 12 分 53 秒, S 波到達時間為 10 時 18 分 33 秒,則震源離此測站的距離為何?

(解)

中崙高中防災教育融入地球科學:探究台灣大地震

地科教師林詩怡參加國家地震工程研究中心的「地震防災教材」與團隊教師一起設計、編寫

	`	台灣的板塊構造
--	---	---------

(1) 製作模型:將附圖的台灣板塊構造沿其外緣剪下,並摺疊及膠黏,製作成立體模型。

(2) 觀察模型:

1.台灣位於哪兩個板塊的交界上?	
2.板塊的界線是位在哪一個地形構造上?	

4.地震與板塊有何關係?	
T •21517225211X286 H 151199171	

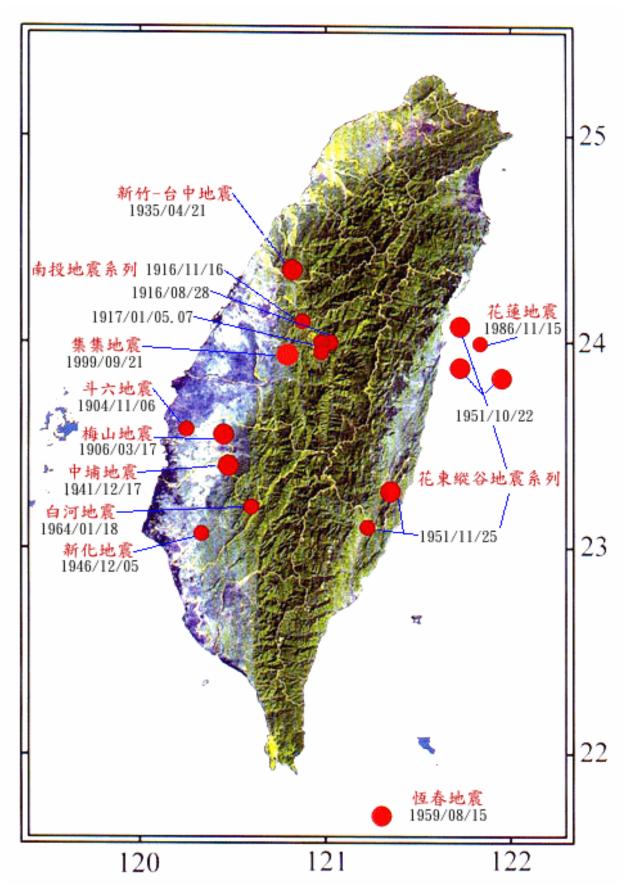
二、百年地震災害

表一所列,除了集集大地震外,還有台灣地區自有儀器觀測以來的一百年間(1898-1997年),災情最為慘重之十次災害地震;其震央如圖一台灣地形圖中的圓點所示。

表一

No	地震名稱	年/月/日	時間	震深源度 (km)	地震規模 (M _L)	人口死亡	房屋全毀
1	斗六地震	1904/11/06	04:25	7	6.1	145	661
2	梅山地震	1906/03/17	06:43	6	7.1	1258	6769
		1916/08/28	15:27	45	6.8	16	614
	古机业录入司	1916/11/15	06:31	3	6.2	1	97
3	南投地震系列	1917/01/05	00:55	淺	6.2	54	130
		1917/01/07	02:08	淺	5.5		187
4	新竹-台中地震	1935/04/21	06:02	5	7.1	3276	17907
5	中埔地震	1941/12/17	03:19	12	7.1	358	4520
6	新化地震	1946/12/05	06:47	5	6.1	74	1954
		1951/10/22	05:34	4	7.3	68	
	花東縱谷地震系列	1951/10/22	11:29	1	7.1		
7		1951/10/22	13:43	18	7.1		
		1951/11/25	02:47	16	6.1		
		1951/11/25	02:50	36	7.3	17	1016
8	恆春地震	1959/08/15	16:57	20	7.1	16	1214
9	白河地震	1964/01/18	20:04	18	6.3	106	10924
10	花蓮地震	1986/11/15	05:20	15	6.8	13	37
	集集大地震	1999/09/21	01:47	8	7.3	2375	76000

試由表一及圖一的資料,依序探討下列問題:


- 1.可以將台灣附近地區大致分為如表二所列的五個地形區。
- 2.這幾次造成重大災害的地震震央並不是均勻分佈在各個地形區。請儘可從圖一中觀察出各個地震震央座落的地形區,並記錄於表二中。

表二

地	形	分	品	震	央	分	佈	在	此	分	品	的	地	震	名	稱
1.台灣	海峽															
2.西部	平原、	丘陵														
3.中央	·山脈															
4.花東	縱谷及	海岸山	脈													
5.東、	南部海	底														

	4. 花果縱谷及海岸山脈		
	5.東、南部海底		
		的災害程度不儘相同。試參考表一各個地震的災情及表二的 起重大傷亡的災害地震是發生在哪一個地形區?	紀錄,
4.	各個地形區百年來引起重大	災害的地震發生機率不同。表二中哪一個地形區的發生機率	較高?
5.	承上所述,為什麼該地形區	的發生機率較高?	

- 6.從台灣以往的地震事件記錄,讓我們倍感地震災害的威脅。地震的發生至今仍是無法預測的, 但百年來的地震記錄卻稍可提供我們參考。請估計一下:台灣大概多久會發生一次諸如表一所 列的重大災害地震?______
- 7.1916年8月28日南投地震與上一次1999年9月21日集集大地震的震央大致座落在附近相同區域。南投地震在全台灣各地造成2級以上的震度,而集集大地震在各地所造成的震動更是高達3級以上,且引起的傷亡狀況也較為慘重。試從表一的資料,比較一下這兩次地震的發生狀況,為何震度及傷亡情形會有很大的差別?

圖一、1898-1997年災情最為慘重之十次災害地震及集集地震震央分布圖

三、探討921集集地震

1.	專家認為此次地震的發生與斷層有關,	究竟是哪一	・條斷層?	此斷層由北到南的	分佈範圍為
	何?全長約多少公里?				

2. 斷層作用所造成的地震災害可概分為下列兩種方式:其一是地盤錯動引起的地面變形;另一個則是錯動時併發的激烈震動。參考圖二的斷層位置,分析看看在921 集集地震災害實例中,哪些實例主要是因地面變形所造成的?哪些又是直接受到強烈震動所造成的?

3. 此次地震斷層的錯動狀況為何?圖二是中部地區各鄉鎮在此次地震的死亡人數資料,其與斷層構造及錯動狀況有何關係?

四、地震與斷層

地震與斷層的關係極為密切,斷層的錯動會使地面振動而發生地震。台灣地區位於兩個板塊的邊界,兩個板塊間的作用就是造成斷層與地震的主因。由野外探測發現台灣存在許多的活動斷層,如課本圖 4-14 所示;其中紅色所標示的斷層是在一萬年內有活動的,甚至曾引發過近代的強烈地震。請依下列的步驟探察地震與斷層的關係:

- 1.請將圖一災害性地震的震央分佈圖與課本 圖 4-14 台灣活動斷層分佈圖放在一起對 照、比較。
- 2.觀察表三所列地震的震央是位於哪一斷層 上(圖中紅色所標示的斷層線)?並記錄於 表三中。

表三

地震名稱	震央所在的活動斷層
梅山地震	
新竹-台中地震	
新化地震	

※延伸活動:承續步驟2,再找找看!

1.你的學校及住家附近可有哪一條活動斷層通過?______

2.該活動斷層可曾引起地震,甚至導致災害?你儘可與師長或親朋好友討論,或者上網查詢一下!

3.參考網站:中央氣象局 http://scman.cwb.gov.tw

中央地質調查所 http://www.moeacgs.gov.tw

中央大學地物所活斷層杳 http://140.115.123.30/921/acfaults/default.HTM